library(genetics)
# single calc
m <- c("multiplicative","recessive","dominant")
for(i in 1:3)
{
print(pbsize2(N=50,alpha=5e-2,gamma=1.1,p=0.1,kp=0.1, model=m[i]))
print(power.casectrl(p=0.1, N=50, gamma=1.1, kp=.1, alpha=5e-2, minh=m[i]))
}
# for a range of sample sizes
pbsize2(p=0.1, N=c(25,50,100,200,500), gamma=1.1, kp=.1,
alpha=5e-2, model='r')
power.casectrl(p=0.1, N=c(25,50,100,200,500), gamma=1.1, kp=.1,
alpha=5e-2, minh='r')
# create a power table
f <- function(p)
power.casectrl(p=p, N=seq(100,1000,by=100), gamma=1.1, kp=.1,
alpha=5e-2, minh='recessive')
m <- sapply( X=seq(0.1,0.9, by=0.1), f)
colnames(m) <- seq(0.1,0.9, by=0.1)
rownames(m) <- seq(100,1000,by=100)
print(round(m,2))
f2 <- function(p)
pbsize2(p=p, N=seq(100,1000,by=100), gamma=1.1, kp=.1,
alpha=5e-2, model='recessive')
m <- sapply( X=seq(0.1,0.9, by=0.1), f2)
colnames(m) <- seq(0.1,0.9, by=0.1)
rownames(m) <- seq(100,1000,by=100)
print(round(m,2))
Run the code above in your browser using DataLab