Learn R Programming

gap (version 1.1-1)

hap: Haplotype reconstruction

Description

Haplotype reconstruction using sorting and trimming algorithms

Usage

hap(id,data,nloci,loci=rep(2,nloci),names=paste("loci",1:nloci,sep=""),
              control=hap.control())

Arguments

id
a column of subject id
data
genotype table
nloci
number of loci
loci
number of alleles at all loci
names
locus names
control
is a function with the following arguments,
  1. mb Maximum dynamic storage to be allocated, in Mb
  2. pr Prior (ie population) probability threshold
  3. po Posterior probability threshold
  4. to Log-likelihood convergence tolerance

Value

  • The returned value is a list containing:
  • l1log-likelihood assuming linkage disequilibrium
  • convergeconvergence status, 0=failed, 1=succeeded
  • niternumber of iterations

References

Clayton DG (2001) SNPHAP. http://www-gene.cimr.cam.ac.uk/clayton/software

Zhao JH and W Qian (2003) Association analysis of unrelated individuals using polymorphic genetic markers. RSS 2003, Hassalt, Belgium

Zhao JH (2004). 2LD, GENECOUNTING and HAP: Computer programs for linkage disequilibrium analysis. Bioinformatics 20: 1325-1326

Details

The package can hanlde much larger number of multiallelic loci. For large sample size with relatively small number of multiallelic loci, genecounting should be used.

See Also

genecounting

Examples

Run this code
# 4 SNP example, to generate hap.out and assign.out alone
data(fsnps)
hap(id=fsnps[,1],data=fsnps[,3:10],nloci=4)
dir()
file.show("hap.out")
file.show("assign.out")

# to generate results of imputations
control <- hap.control(ss=1,mi=5,hapfile="h",assignfile="a")
hap(id=fsnps[,1],data=fsnps[,3:10],nloci=4,control=control)
dir()

Run the code above in your browser using DataLab