## Not run:
#
# ACE_CI <- function(mzData,dzData,n.sim=5,selV=NULL,verbose=TRUE)
# {
# ACEr_twinData <- h2(mzDat=mzData,dzDat=dzData,selV=selV)
# print(ACEr_twinData)
#
# nmz <- dim(mzData)[1]
# ndz <- dim(dzData)[1]
# a <- ar <- vector()
# set.seed(12345)
# for(i in 1:n.sim)
# {
# cat("\rRunning # ",i,"/", n.sim,"\r",sep="")
# sampled_mz <- sample(1:nmz, replace=TRUE)
# sampled_dz <- sample(1:ndz, replace=TRUE)
# mzDat <- mzData[sampled_mz,]
# dzDat <- dzData[sampled_dz,]
# ACEr_i <- h2(mzDat=mzDat,dzDat=dzDat,selV=selV)
# if(verbose) print(ACEr_i)
# ar <- rbind(ar,ACEr_i)
# }
# cat("\n\nheritability according to correlations\n\n")
# ar <- as.data.frame(ar)
# m <- mean(ar,na.rm=TRUE)
# s <- sd(ar,na.rm=TRUE)
# allr <- data.frame(mean=m,sd=s,lcl=m-1.96*s,ucl=m+1.96*s)
# print(allr)
# }
#
# selVars <- c('bmi1','bmi2')
#
# library(mvtnorm)
# n.sim <- 500
# cat ("\nThe first study\n\n")
# mzm <- as.data.frame(rmvnorm(195, c(22.75,22.75),
# matrix(2.66^2*c(1, 0.67, 0.67, 1), 2)))
# dzm <- as.data.frame(rmvnorm(130, c(23.44,23.44),
# matrix(2.75^2*c(1, 0.32, 0.32, 1), 2)))
# mzw <- as.data.frame(rmvnorm(384, c(21.44,21.44),
# matrix(3.08^2*c(1, 0.72, 0.72, 1), 2)))
# dzw <- as.data.frame(rmvnorm(243, c(21.72,21.72),
# matrix(3.12^2*c(1, 0.33, 0.33, 1), 2)))
# names(mzm) <- names(dzm) <- names(mzw) <- names(dzw) <- c("bmi1","bmi2")
# ACE_CI(mzm,dzm,n.sim,selV=selVars,verbose=FALSE)
# ACE_CI(mzw,dzw,n.sim,selV=selVars,verbose=FALSE)
#
# ## End(Not run)
Run the code above in your browser using DataLab