## Not run:
# # example 2 from hwe.doc:
# a<-c(
# 3,
# 4, 2,
# 2, 2, 2,
# 3, 3, 2, 1,
# 0, 1, 0, 0, 0,
# 0, 0, 0, 0, 0, 1,
# 0, 0, 1, 0, 0, 0, 0,
# 0, 0, 0, 2, 1, 0, 0, 0)
# ex2 <- hwe.hardy(a=a,alleles=8)
#
# # example using HLA
# data(hla)
# x <- hla[,3:4]
# y <- pgc(x,handle.miss=0,with.id=1)
# n.alleles <- max(x,na.rm=TRUE)
# z <- vector("numeric",n.alleles*(n.alleles+1)/2)
# z[y$idsave] <- y$wt
# hwe.hardy(a=z,alleles=n.alleles)
#
# # with use of class 'genotype'
# # this is to be fixed
# library(genetics)
# hlagen <- genotype(a1=x$DQR.a1, a2=x$DQR.a2,
# alleles=sort(unique(c(x$DQR.a1, x$DQR.a2))))
# hwe.hardy(hlagen)
#
# # comparison with hwe
# hwe(z,data.type="count")
#
# # to create input file for HARDY
# print.tri<-function (xx,n) {
# cat(n,"\n")
# for(i in 1:n) {
# for(j in 1:i) {
# cat(xx[i,j]," ")
# }
# cat("\n")
# }
# cat("100 170 1000\n")
# }
# xx<-matrix(0,n.alleles,n.alleles)
# xxx<-lower.tri(xx,diag=TRUE)
# xx[xxx]<-z
# sink("z.dat")
# print.tri(xx,n.alleles)
# sink()
# # now call as: hwe z.dat z.out
# ## End(Not run)
Run the code above in your browser using DataLab