Learn R Programming

gap (version 1.1-16)

mvmeta: Multivariate meta-analysis based on generalized least squares

Description

This function accepts a data matrix of parameter estimates and their variance-covariance matrix from individual studies and obtain a generalized least squares (GLS) estimate and heterogeneity statistic.

For instance, this would be appropriate for combining linear correlation coefficients of single nucleotide polymorphisms (SNPs) for a given region.

Usage

mvmeta(b,V)

Arguments

b
the parameter estimates
V
the triangular variance-covariance matrix

Value

The returned value is a list containing:
d
the compact parameter estimates
Psi
the compact covariance-covariance matrix
X
the design matrix
beta
the pooled parameter estimates
cov.beta
the pooled variance-covariance matrix
X2
the Chi-squared statistic for heterogeneity
df
the degrees(s) of freedom
p
the p value

References

Hartung J, Knapp G, Sinha BK. Statistical Meta-analysis with Applications, Wiley 2008.

See Also

metareg

Examples

Run this code
## Not run: 
# # example 11.3 from Hartung et al.
# #
# b <- matrix(c(
# 0.808, 1.308, 1.379, NA, NA,
# NA, 1.266, 1.828, 1.962, NA,
# NA, 1.835, NA, 2.568, NA,
# NA, 1.272, NA, NA, 2.038,
# 1.171, 2.024, 2.423, 3.159, NA,
# 0.681, NA, NA, NA, NA),ncol=5, byrow=TRUE)
# 
# psi1 <- psi2 <- psi3 <- psi4 <- psi5 <- psi6 <- matrix(0,5,5)
# 
# psi1[1,1] <- 0.0985
# psi1[1,2] <- 0.0611
# psi1[1,3] <- 0.0623
# psi1[2,2] <- 0.1142
# psi1[2,3] <- 0.0761
# psi1[3,3] <- 0.1215
# 
# psi2[2,2] <- 0.0713
# psi2[2,3] <- 0.0539
# psi2[2,4] <- 0.0561
# psi2[3,3] <- 0.0938
# psi2[3,4] <- 0.0698
# psi2[4,4] <- 0.0981
# 
# psi3[2,2] <- 0.1228
# psi3[2,4] <- 0.1119
# psi3[4,4] <- 0.1790
# 
# psi4[2,2] <- 0.0562
# psi4[2,5] <- 0.0459
# psi4[5,5] <- 0.0815
# 
# psi5[1,1] <- 0.0895
# psi5[1,2] <- 0.0729
# psi5[1,3] <- 0.0806
# psi5[1,4] <- 0.0950
# psi5[2,2] <- 0.1350
# psi5[2,3] <- 0.1151
# psi5[2,4] <- 0.1394
# psi5[3,3] <- 0.1669
# psi5[3,4] <- 0.1609
# psi5[4,4] <- 0.2381
# 
# psi6[1,1] <- 0.0223
# 
# V <- rbind(psi1[upper.tri(psi1,diag=TRUE)],psi2[upper.tri(psi2,diag=TRUE)],
# psi3[upper.tri(psi3,diag=TRUE)],psi4[upper.tri(psi4,diag=TRUE)],
# psi5[upper.tri(psi5,diag=TRUE)],psi6[upper.tri(psi6,diag=TRUE)])
# 
# mvmeta(b,V)
# ## End(Not run)

Run the code above in your browser using DataLab