## Not run:
#
# # single calc
# m <- c("multiplicative","recessive","dominant","additive","overdominant")
# for(i in 1:5) print(pbsize2(N=50,alpha=5e-2,gamma=1.1,p=0.1,kp=0.1, model=m[i]))
#
# # for a range of sample sizes
# pbsize2(p=0.1, N=c(25,50,100,200,500), gamma=1.1, kp=.1, alpha=5e-2, model='r')
#
# # create a power table
# f <- function(p)
# pbsize2(p=p, N=seq(100,1000,by=100), gamma=1.1, kp=.1, alpha=5e-2, model='recessive')
# m <- sapply( X=seq(0.1,0.9, by=0.1), f)
# colnames(m) <- seq(0.1,0.9, by=0.1)
# rownames(m) <- seq(100,1000,by=100)
# print(round(m,2))
#
# library(genetics)
# m <- c("multiplicative","recessive","dominant","partialrecessive")
# for(i in 1:4) print(power.casectrl(p=0.1, N=50, gamma=1.1, kp=.1, alpha=5e-2,
# minh=m[i]))
# power.casectrl(p=0.1, N=c(25,50,100,200,500), gamma=1.1, kp=.1, alpha=5e-2,
# minh='r')
# f <- function(p)
# power.casectrl(p=p, N=seq(100,1000,by=100), gamma=1.1, kp=.1, alpha=5e-2,
# minh='recessive')
# m <- sapply( X=seq(0.1,0.9, by=0.1), f)
# colnames(m) <- seq(0.1,0.9, by=0.1)
# rownames(m) <- seq(100,1000,by=100)
# print(round(m,2))
#
# ## End(Not run)
Run the code above in your browser using DataLab