To calculate probability of familial clustering of disease using Monte Carlo simulation
pfc.sim(famdata,n.sim=1000000,n.loop=1)
collective information of sib size, number of affected sibs and their frequencies
number of simulations in a single Monte Carlo run
total number of Monte Carlo runs
The returned value is a list containing:
a copy of the number of simulations in a single Monte Carlo run
the total number of Monte Carlo runs
the observed p value
accumulated probabilities at the lower tails
simulated p values
Yu C and D Zelterman (2001) Exact inference for family disease clusters. Commun Stat -- Theory Meth 30:2293-2305
# NOT RUN {
# Li FP, Fraumeni JF Jr, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA,
# Miller RW. A cancer family syndrome in twenty-four kindreds.
# Cancer Res 1988, 48(18):5358-62.
# family_size #_of_affected frequency
famtest<-c(
1, 0, 2,
1, 1, 0,
2, 0, 1,
2, 1, 4,
2, 2, 3,
3, 0, 0,
3, 1, 2,
3, 2, 1,
3, 3, 1,
4, 0, 0,
4, 1, 2,
5, 0, 0,
5, 1, 1,
6, 0, 0,
6, 1, 1,
7, 0, 0,
7, 1, 1,
8, 0, 0,
8, 1, 1,
8, 2, 1,
8, 3, 1,
9, 3, 1)
test<-matrix(famtest,byrow=T,ncol=3)
famp<-pfc.sim(test)
# }
Run the code above in your browser using DataLab