#load competition data
data("gause_1934_science_f02_03")
#subset out data from species grown in mixture
mixturedat<-gause_1934_science_f02_03[gause_1934_science_f02_03$Treatment=="Mixture",]
#extract time and species data
time<-mixturedat$Day
species<-data.frame(mixturedat$Volume_Species1, mixturedat$Volume_Species2)
colnames(species)<-c("P_caudatum", "P_aurelia")
# \donttest{
#run wrapper
gause_out<-gause_wrapper(time=time, species=species)
# number of species
N<-ncol(gause_out$rawdata)-1
# parameters
pars_full<-c(gause_out$parameter_intervals$mu)
# data.frame for optimization
fittigdata<-data.frame(y=unlist(gause_out$rawdata[,-1]),
time=gause_out$rawdata$time,
N=N)
yest<-ode_prediction(pars_full, time=fittigdata$time, N=fittigdata$N)
plot(fittigdata$y, yest, xlab="observation", ylab="prediction")
abline(a=0, b=1, lty=2)
#example of how to apply function, using nls()
mod<-nls(y~ode_prediction(pars_full, time, N),
start = list(pars_full=pars_full),
data=fittigdata)
summary(mod)
# }
Run the code above in your browser using DataLab