# NOT RUN {
if (interactive()) {
library(gaussplotR)
## Load the sample data set
data(gaussplot_sample_data)
## The raw data we'd like to use are in columns 1:3
samp_dat <-
gaussplot_sample_data[,1:3]
## Fit the three required models
gauss_fit_uncn <-
fit_gaussian_2D(
samp_dat,
method = "elliptical_log",
constrain_amplitude = FALSE,
constrain_orientation = "unconstrained"
)
gauss_fit_diag <-
fit_gaussian_2D(
samp_dat,
method = "elliptical_log",
constrain_amplitude = FALSE,
constrain_orientation = 0
)
gauss_fit_indp <-
fit_gaussian_2D(
samp_dat,
method = "elliptical_log",
constrain_amplitude = FALSE,
constrain_orientation = -1
)
## Combine the outputs into a list
models_list <-
list(
gauss_fit_uncn,
gauss_fit_diag,
gauss_fit_indp
)
## Now characterize
out <-
characterize_gaussian_fits(models_list)
out
## Alternatively, the raw data itself can be supplied.
## This is less preferred, as fitting of models may fail
## internally.
out2 <-
characterize_gaussian_fits(data = samp_dat)
## This produces the same output, assuming models are fit without error
identical(out, out2)
}
# }
Run the code above in your browser using DataLab