Density, distribution function, quantile function, and random
generation for the generalized Beta distribution.
Usage
dgbeta(u, c, d, kappa, tau, log = FALSE)
pgbeta(q, c, d, kappa, tau)
rgbeta(n, c, d, kappa, tau, method = "mixture")
qgbeta(p, c, d, kappa, tau)
Arguments
u
numeric vector
c, d, kappa, tau
parameters; they must be strictly positive numbers,
except kappa which can take any value
log
logical, whether to return the log-density
q
numeric vector of quantiles
n
positive integer, the desired number of simulations
method
the method of random generation, "mixture" or
"arou"; only a positive kappa is allowed for the
"mixture" method, but this method is faster
p
numeric vector of probabilities
References
Marwa Hamza & Pierre Vallois.
On Kummer<U+2019>s distributions of type two and generalized Beta
distributions.
Statistics & Probability Letters 118 (2016), pp. 60-69.
<doi:10.1016/j.spl.2016.03.014>
James J. Chen & Melvin R. Novick.
Bayesian Analysis for Binomial Models with Generalized Beta Prior
Distributions.
Journal of Educational Statistics 9, No. 2 (1984), pp. 163-175.
<doi:10.3102/10769986009002163>