basehaz.gbm(t, delta, f.x, t.eval = NULL, smooth = FALSE, cumulative = TRUE)
TRUE
basehaz.gbm
will smooth the estimated baseline hazard using Friedman's super smoother supsmu
TRUE
the cumulative survival function will be computed t.eval
if t.eval
is not NULL
) containing the baseline hazard evaluated at t (or at t.eval
if t.eval
is not NULL
). If cumulative
is set to TRUE
then the returned vector evaluates the cumulative hazard function at those values.
gbm
can estimate the f(x) component via partial likelihood. After estimating f(x), basehaz.gbm
can compute the a nonparametric estimate of lambda(t).
N. Breslow (1974). "Covariance analysis of censored survival data," Biometrics 30:89-99.
survfit
, gbm