Package: |
gbm |
Version: |
2.1 |
Date: |
2013-05-10 |
Depends: |
R (>= 2.9.0), survival, lattice, mgcv |
License: |
GPL (version 2 or newer) |
URL: |
http://code.google.com/p/gradientboostedmodels/ |
basehaz.gbm Baseline hazard function calibrate.plot Calibration plot gbm Generalized Boosted Regression Modeling gbm.object Generalized Boosted Regression Model Object gbm.perf GBM performance plot.gbm Marginal plots of fitted gbm objects predict.gbm Predict method for GBM Model Fits pretty.gbm.tree Print gbm tree components quantile.rug Quantile rug plot relative.influence Methods for estimating relative influence shrink.gbm L1 shrinkage of the predictor variables in a GBM shrink.gbm.pred Predictions from a shrunked GBM summary.gbm Summary of a gbm object
Further information is available in the following vignettes:
gbm |
Generalized Boosted Models: A guide to the gbm package (source, pdf) |
G. Ridgeway (1999). The state of boosting, Computing Science and Statistics 31:172-181.
J.H. Friedman, T. Hastie, R. Tibshirani (2000). Additive Logistic Regression: a Statistical View of Boosting, Annals of Statistics 28(2):337-374.
J.H. Friedman (2001). Greedy Function Approximation: A Gradient Boosting Machine, Annals of Statistics 29(5):1189-1232.
J.H. Friedman (2002). Stochastic Gradient Boosting, Computational Statistics and Data Analysis 38(4):367-378.
The MART website.