gbmCrossVal(cv.folds, nTrain, n.cores,
class.stratify.cv, data,
x, y, offset, distribution, w, var.monotone,
n.trees, interaction.depth, n.minobsinnode,
shrinkage, bag.fraction,
var.names, response.name, group)
gbmCrossValModelBuild(cv.folds, cv.group, n.cores,
i.train, x, y, offset,
distribution, w, var.monotone,
n.trees, interaction.depth,
n.minobsinnode, shrinkage,
bag.fraction, var.names,
response.name, group)
gbmDoFold(X, i.train, x, y, offset, distribution, w, var.monotone, n.trees, interaction.depth, n.minobsinnode, shrinkage, bag.fraction, cv.group, var.names, response.name, group, s)
gbmCrossValErr(cv.models, cv.folds, cv.group, nTrain, n.trees)
gbmCrossValPredictions(cv.models, cv.folds, cv.group,
best.iter.cv, distribution, data, y)
gbm
.gbm
.gbm
.gbm
.gbm
.gbm
.gbm
.gbm
.distribution = "pairwise"
. See
gbm
.gbm
.L. Breiman (2001). Random Forests.
gbm