Computes the Breslow estimator of the baseline hazard function for a proportional hazard regression model
basehaz.gbm(t, delta, f.x,
t.eval = NULL,
smooth = FALSE,
cumulative = TRUE)
the survival times
the censoring indicator
the predicted values of the regression model on the log hazard scale
values at which the baseline hazard will be evaluated
if TRUE
basehaz.gbm
will smooth the estimated baseline hazard using Friedman's super smoother supsmu
if TRUE
the cumulative survival function will be computed
a vector of length equal to the length of t (or of length t.eval
if t.eval
is not NULL
) containing the baseline hazard evaluated at t (or at t.eval
if t.eval
is not NULL
). If cumulative
is set to TRUE
then the returned vector evaluates the cumulative hazard function at those values.
The proportional hazard model assumes h(t|x)=lambda(t)*exp(f(x)). gbm
can estimate the f(x) component via partial likelihood. After estimating f(x), basehaz.gbm
can compute the a nonparametric estimate of lambda(t).
N. Breslow (1972). "Disussion of `Regression Models and Life-Tables' by D.R. Cox," Journal of the Royal Statistical Society, Series B, 34(2):216-217.
N. Breslow (1974). "Covariance analysis of censored survival data," Biometrics 30:89-99.