## load a simulated data set
data(dat)
## Not run:
# ## obtain posterior estimates of allelic proportions; short chains are used for
# ## the example, we recommend increasing this to at least 1000 MCMC steps with a
# ## 500 step burnin
# props<-estprops(cov1=t(dat[[1]]),cov2=t(dat[[2]]),mcmc.steps=20,mcmc.burnin=5,
# mcmc.thin=1)
#
# ## plot point estimates and 95
# ## allelic proportions for the first nine individuals
# par(mfrow=c(3,3))
# for(i in 1:9){
# plot(props[[i]][,3],ylim=c(0,1),axes=FALSE,xlab="ratios",ylab="proportions")
# axis(1,at=1:5,c("1:3","1:2","1:1","2:1","3:1"))
# axis(2)
# box()
# segments(1:5,props[[i]][,1],1:5,props[[i]][,5])
# title(main=paste("true ploidy =",dat[[3]][i]))
# }
# ## End(Not run)
Run the code above in your browser using DataLab