# NOT RUN {
# ========= Model train=======
have_numpy <- reticulate::py_module_available("numpy")
have_sklearn <- reticulate::py_module_available("sklearn")
if(have_numpy && have_sklearn){
library(gcForest)
# req_py()
sk <- NULL
.onLoad <- function(libname, pkgname) {
sk <<- reticulate::import("sklearn", delay_load = TRUE)
}
sk <<- reticulate::import("sklearn", delay_load = TRUE)
train_test_split <- sk$model_selection$train_test_split
data <- sk$datasets$load_iris
iris <- data()
X = iris$data
y = iris$target
data_split = train_test_split(X, y, test_size=0.33)
X_tr <- data_split[[1]]
X_te <- data_split[[2]]
y_tr <- data_split[[3]]
y_te <- data_split[[4]]
gcforest_m <- gcforest(shape_1X=4L, window=2L, tolerance=0.0)
gcforest_m$fit(X_tr, y_tr)
gcf_model <- model_save(gcforest_m,'gcforest_model.model')
gcf <- model_load('gcforest_model.model')
gcf$predict(X_te)
# learn more from gcForest package tutorial
utils::vignette('gcForest-docs')
}else{
print('You should have the Python testing environment!')
}
# }
Run the code above in your browser using DataLab