Learn R Programming

gconcord (version 0.41)

concord: CONvex CORrelation selection methoD

Description

Estimates a sparse inverse covariance matrix from a convex pseudo-likelihood function with lasso L1 penalty

Usage

concord(data, lambda, tol = 1e-05, maxit = 100, save.iterates = FALSE, ...)

Arguments

data
Data matrix with n observations (rows) and p variables (columns)
lambda
Penalty parameter
tol
Convergence threshold
maxit
Maximum number of iterations before termination
save.iterates
Returns iterates if TRUE
...
ignored

Details

Implements the CONCORD method by Khare, Oh and Rajaratnam (2013) http://arxiv.org/abs/1307.5381

Examples

Run this code
library(mvtnorm)

## True omega
omega <- matrix(0,3,3)
omega[1,2] <- omega[2,3] <- 2.1
omega <- t(omega) + omega
diag(omega) <- 3

sigma <- solve(omega)

## Generate data
set.seed(60)
data <- rmvnorm(100, rep(0,3), sigma)

## Solve
concord(data,2)

Run the code above in your browser using DataLab