Learn R Programming

gconcord (version 0.41)

symlasso: Symmetric Lasso (symlasso)

Description

Estimates a sparse inverse covariance matrix from a pseudo-likelihood function formulation with L1 penalty on inverse covariance elements.

Usage

symlasso(data, lambda, tol = 1e-05, maxit = 100, save.iterates = FALSE, ...)

Arguments

data
Data matrix with n observations (rows) and p variables (columns)
lambda
Penalty parameter
tol
Convergence threshold
maxit
Maximum number of iterations before termination
save.iterates
Returns iterates if TRUE
...
ignored

Details

Implements the Symmetric Lasso method by Friedman, Hastie and Tibshirani (2010) http://statweb.stanford.edu/~tibs/ftp/ggraph.pdf

Examples

Run this code
library(mvtnorm)

## True omega
omega <- matrix(0,3,3)
omega[1,2] <- omega[2,3] <- 2.1
omega <- t(omega) + omega
diag(omega) <- 3

sigma <- solve(omega)

## Generate data
set.seed(60)
data <- rmvnorm(100, rep(0,3), sigma)

## Solve
symlasso(data,2.1)

Run the code above in your browser using DataLab