# create image collection from example Landsat data only
# if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {
L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)
create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}
L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,
bottom=4345299, top=4744931, t0="2018-04", t1="2018-06"),
srs="EPSG:32618", nx = 497, ny=526, dt="P1M")
L8.cube = raster_cube(L8.col, v, chunking = c(1,1000,1000))
L8.cube = select_bands(L8.cube, c("B04", "B05"))
L8.cube.mean5x5 = window_space(L8.cube, kernel = matrix(1/25, 5, 5))
L8.cube.mean5x5
# \donttest{
plot(L8.cube.mean5x5, key.pos=1)
# }
L8.cube.med_sd = window_space(L8.cube, "median(B04)" ,"sd(B04)", "median(B05)", "sd(B05)",
window = c(5,5), keep_bands = TRUE)
L8.cube.med_sd
# \donttest{
plot(L8.cube.med_sd, key.pos=1)
# }
Run the code above in your browser using DataLab