# create image collection from example Landsat data only
# if not already done in other examples
if (!file.exists(file.path(tempdir(), "L8.db"))) {
L8_files <- list.files(system.file("L8NY18", package = "gdalcubes"),
".TIF", recursive = TRUE, full.names = TRUE)
create_image_collection(L8_files, "L8_L1TP", file.path(tempdir(), "L8.db"), quiet = TRUE)
}
L8.col = image_collection(file.path(tempdir(), "L8.db"))
v = cube_view(extent=list(left=388941.2, right=766552.4,
bottom=4345299, top=4744931, t0="2018-01", t1="2018-12"),
srs="EPSG:32618", nx = 497, ny=526, dt="P3M", aggregation = "median")
L8.cube = raster_cube(L8.col, v, mask=image_mask("BQA", bits=4, values=16))
L8.rgb = select_bands(L8.cube, c("B02", "B03", "B04"))
# crop by integer indexes
L8.cropped = crop(L8.rgb, iextent = list(x=c(0,400), y=c(0,400), t=c(1,1)))
# crop by spatiotemporal coordinates
L8.cropped = crop(L8.rgb, extent = list(left=388941.2, right=766552.4,
bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), snap = "in")
L8.cropped
L8.cropped = crop(L8.rgb, extent = list(left=388941.2, right=766552.4,
bottom=4345299, top=4744931, t0="2018-01", t1="2018-06"), snap = "near")
L8.cropped
# \donttest{
plot(L8.cropped, rgb = 3:1, zlim=c(5000,10000))
# }
Run the code above in your browser using DataLab