Function for interactive detector for spatial associations model.
idsa(
formula,
data,
wt = NULL,
discnum = 3:8,
discmethod = "quantile",
overlay = "and",
strategy = 2L,
increase_rate = 0.05,
cores = 1,
seed = 123456789,
alpha = 0.95,
...
)
A list.
interaction
the interaction result of IDSA model
risk
whether values of the response variable between a pair of overlay zones are significantly different
number_individual_explanatory_variables
the number of individual explanatory variables used for examining the interaction effects
number_overlay_zones
the number of overlay zones
percentage_finely_divided_zones
the percentage of finely divided zones that are determined by the interaction of variables
A formula of IDSA model.
A data.frame
, tibble
or sf
object of observation data.
(optional) The spatial weight matrix. When data
is not an sf
object, must provide wt
.
(optional) Number of multilevel discretization. Default will use 3:8
.
(optional) The discretization methods. Default all use quantile
.
Noted that robust
will use robust_disc()
; rpart
will use rpart_disc()
;
Others use sdsfun::discretize_vector()
.
(optional) Spatial overlay method. One of and
, or
, intersection
.
Default is and
.
(optional) Discretization strategy. When strategy
is 1L
, choose the highest SPADE model q-statistics to
determinate optimal spatial data discretization parameters. When strategy
is 2L
, The optimal discrete parameters of
spatial data are selected by combining LOESS model.
(optional) The critical increase rate of the number of discretization.
Default is 5%
.
(optional) Positive integer (default is 1). When cores are greater than 1, use multi-core parallel computing.
(optional) Random number seed, default is 123456789
.
(optional) Specifies the size of confidence level. Default is 0.95
.
(optional) Other arguments passed to cpsd_disc()
.
Wenbo Lv lyu.geosocial@gmail.com
Yongze Song & Peng Wu (2021) An interactive detector for spatial associations, International Journal of Geographical Information Science, 35:8, 1676-1701, DOI:10.1080/13658816.2021.1882680
data('sim')
sim1 = sf::st_as_sf(sim,coords = c('lo','la'))
g = idsa(y ~ ., data = sim1)
g
Run the code above in your browser using DataLab