Function for determining the optimal spatial data discretization based on SPADE q-statistics.
cpsd_disc(
formula,
data,
wt,
discnum = 3:8,
discmethod = "quantile",
strategy = 2L,
increase_rate = 0.05,
cores = 1,
seed = 123456789,
...
)A list.
xdiscretization variable name
koptimal number of spatial data discreteization
methodoptimal spatial data discretization method
discthe result of optimal spatial data discretization
A formula of optimal spatial data discretization.
A data.frame, tibble or sf object of observation data.
The spatial weight matrix.
(optional) A vector of number of classes for discretization. Default is 3:8.
(optional) The discretization methods. Default all use quantile.
Noted that rpart will use rpart_disc(); Others use sdsfun::discretize_vector().
(optional) Discretization strategy. When strategy is 1L, choose the highest SPADE model q-statistics to
determinate optimal spatial data discretization parameters. When strategy is 2L, The optimal discrete parameters of
spatial data are selected by combining LOESS model.
(optional) The critical increase rate of the number of discretization.
Default is 5%.
(optional) Positive integer (default is 1). When cores are greater than 1, use multi-core parallel computing.
(optional) Random seed number, default is 123456789.
(optional) Other arguments passed to sdsfun::discretize_vector() or rpart_disc().
Wenbo Lv lyu.geosocial@gmail.com
Yongze Song & Peng Wu (2021) An interactive detector for spatial associations, International Journal of Geographical Information Science, 35:8, 1676-1701, DOI:10.1080/13658816.2021.1882680
data('sim')
wt = sdsfun::inverse_distance_swm(sf::st_as_sf(sim,coords = c('lo','la')))
cpsd_disc(y ~ xa + xb + xc, data = sim, wt = wt)
Run the code above in your browser using DataLab