Learn R Programming

geeVerse

geeVerse is an R package to provide computationally efficient implementations of penalized generalized estimating equations for any combination of 1) simultaneous variable selection and estimation for high and even ultra-high dimensional data, 2) conditional quantile or mean regression, and 3) longitudinal or cross-sectional data analysis.

Installation

You can install the latest version of geeVerse from GitHub with:

# install.packages("devtools")
devtools::install_github("zzz1990771/geeVerse")

Usage and Example:

After installation, you can load the package as usual:

library(geeVerse)

To get detailed documentation on the qpgee function, use:

?qpgee

This will show you the function's usage, arguments, and examples.

Running an Example:

#settings
sim_data <- generateData(nsub = 20, nobs = rep(10, 20),  p = 20,
                         beta0 = c(rep(1,5),rep(0,15)), rho = 0.1, correlation = "AR1",
                          dis = "normal", ka = 1)

X=sim_data$X
y=sim_data$y

#fit qpgee with auto selected lambda
qpgee.fit = qpgee(X,y,tau=0.5,nobs=rep(10, 20),ncore=1)
qpgee.fit$beta

Copy Link

Version

Install

install.packages('geeVerse')

Monthly Downloads

607

Version

0.2.1

License

GPL-3

Maintainer

Tianhai Zu

Last Published

July 29th, 2024

Functions in geeVerse (0.2.1)

qpgee.est

Quantile Penalized Generalized Estimating Equations (QPGEE) Estimation Function
PGEE

PGEE accelerated with RCpp
predict.qpgee

Predict method for qpgee model objects
compile_result

Compile Results from qpgee()
generateData

Generate Data for Simulation
simuGene

A Simulated Genetic Data from HapGen2
CVfit

Cross-Validation for Generalized Estimating Equations (GEE)
qpgee

Quantile Penalized Generalized Estimating Equations with Auto Selected Penalty level
Siga_cov

Generate Covariance Matrix
yeastG1

A Subset of Yeast Cell Cycle Gene Expression Data (G1 Phase)