GEE.var.pan(), GEE.var.gst() and GEE.var.wl() are only for the balanced data, while the others can be used for both balanced and unbalanced data.
Fay MP and Graubard BI. Small-sample adjustments for Wald-type tests using sandwich estimators. Biometrics 2001;57: 1198-1206.
Gosho M, Sato Y and Takeuchi H. Robust covariance estimator for small-sample adjustment in the generalized estimating equations: A simulation study. Science Journal of Applied Mathematics and Statistics 2014;2(1):20-25.
Kauermann G and Carroll RJ. A note on the efficiency of sandwich covariance matrix estimation. Journal of the American Statistical Association 2001;96: 1387-1398.
Morel JG, Bokossa MC, and Neerchal NK. Small sample correction for the variance of GEE estimators. Biometrical Journal 2003;45(4): 395-409.
MacKinnon JG. Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics 1985;29: 305-325.
Mancl LA and DeRouen TA. A covariance estimator for GEE with improved small-sample properties. Biometrics 2001;57: 126-134.
Pan W. On the robust variance estimator in Generalized Estimating Equations. Biometrika 2001;88: 901-906.
Pottho R. F. and Roy, S. W. A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika 1964;51:313-326
Thall PF, and Vail SC. Some covariance models for longitudinal count data with overdispersion. Biometrics 1990; 46: 657-671.
Wang M and Long Q. Modified robust variance estimator for generalized estimating equations with improved small-sample performance. Statistics in Medicine 2011;30(11): 1278-1291.
Zeger SL and Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986; 121-130.
GEE.var.mk()
GEE.var.kc()
GEE.var.pan()
GEE.var.fg()
GEE.var.gst()
GEE.var.md()
GEE.var.mbn()
GEE.var.wl()
### Run the data analysis using the package using seizure dataset (Poisson);
data(seizure)
seizure$subject <- 1:length(seizure[,1])
data_alt <- reshape(seizure, direction="long", idvar="subject", timevar="Time",
varying=names(seizure)[1:4], v.names="response", times=1:4)
data_alt <- data_alt[order(data_alt$subject),]
data_alt <- data_alt[,c(4,1:3,5,6)]
### independence working correlation structure;
formula <- response~base+trt+Time
lz.ind <- GEE.var.lz(formula,id="subject",family=poisson,
data_alt,corstr="independence")
mk.ind <- GEE.var.mk(formula,id="subject",family=poisson,
data_alt,corstr="independence")
pan.ind <- GEE.var.pan(formula,id="subject",family=poisson,
data_alt,corstr="independence")
gst.ind <- GEE.var.gst(formula,id="subject",family=poisson,
data_alt,corstr="independence")
kc.ind <- GEE.var.kc(formula,id="subject",family=poisson,
data_alt,corstr="independence")
md.ind <- GEE.var.md(formula,id="subject",family=poisson,
data_alt,corstr="independence")
fg.ind <- GEE.var.fg(formula,id="subject",family=poisson,data_alt,
corstr="independence",b=0.75)
mbn.ind <- GEE.var.mbn(formula,id="subject",family=poisson,data_alt,
corstr="independence",d=2,r=1)
wl.ind <- GEE.var.wl(formula,id="subject",family=poisson,
data_alt,corstr="independence")
Run the code above in your browser using DataLab