n-by-n matrix of pairwise kernel values over a set of n samples
y
n-by-1 vector of binary response labels
lambda
scalar, regularization parameter
max.iter
maximum number of iterations
eps
convergence precision
v.init
initial parameter estimate for the kernel weights
b.init
initial parameter estimate for the bias term
silent
set to TRUE to suppress run-time output to stdout (default: FALSE)
Value
A list with two elements:
[object Object],[object Object]
Details
The method operates by constructing iteratively re-weighted least squares approximations
of the log-likelihood loss function and then calling the kernel ridge regression routine
to solve those approximations. The least squares approximations are obtained via the Taylor series
expansion about the current parameter estimates.