Learn R Programming

gelnet (version 1.2.1)

gelnet.kor: Kernel one-class regression

Description

Learns a kernel one-class model for a given kernel matrix

Usage

gelnet.kor(K, lambda, max.iter = 100, eps = 1e-05, v.init = rep(0,
  nrow(K)), silent = FALSE)

Arguments

K
n-by-n matrix of pairwise kernel values over a set of n samples
lambda
scalar, regularization parameter
max.iter
maximum number of iterations
eps
convergence precision
v.init
initial parameter estimate for the kernel weights
silent
set to TRUE to suppress run-time output to stdout (default: FALSE)

Value

  • A list with one element: [object Object]

Details

The method operates by constructing iteratively re-weighted least squares approximations of the log-likelihood loss function and then calling the kernel ridge regression routine to solve those approximations. The least squares approximations are obtained via the Taylor series expansion about the current parameter estimates.

See Also

gelnet.krr, gelnet.logreg