Usage
gelnet.lin(X, y, l1, l2, a = rep(1, n), d = rep(1, p), P = diag(p),
m = rep(0, p), max.iter = 100, eps = 1e-05, w.init = rep(0, p),
b.init = sum(a * y)/sum(a), fix.bias = FALSE, silent = FALSE)
Arguments
X
n-by-p matrix of n samples in p dimensions
y
n-by-1 vector of response values
l1
coefficient for the L1-norm penalty
l2
coefficient for the L2-norm penalty
a
n-by-1 vector of sample weights
d
p-by-1 vector of feature weights
P
p-by-p feature association penalty matrix
m
p-by-1 vector of translation coefficients
max.iter
maximum number of iterations
w.init
initial parameter estimate for the weights
b.init
initial parameter estimate for the bias term
fix.bias
set to TRUE to prevent the bias term from being updated (default: FALSE)
silent
set to TRUE to suppress run-time output to stdout (default: FALSE)