Usage
gelnet.oneclass(X, l1, l2, d = rep(1, p), P = diag(p), m = rep(0, p),
max.iter = 100, eps = 1e-05, w.init = rep(0, p), silent = FALSE)
Arguments
X
n-by-p matrix of n samples in p dimensions
l1
coefficient for the L1-norm penalty
l2
coefficient for the L2-norm penalty
d
p-by-1 vector of feature weights
P
p-by-p feature association penalty matrix
m
p-by-1 vector of translation coefficients
max.iter
maximum number of iterations
w.init
initial parameter estimate for the weights
silent
set to TRUE to suppress run-time output to stdout (default: FALSE)