This package allows the automated generation of network meta-analysis models that can be run using JAGS (using the rjags package), OpenBUGS (using the BRugs package) or WinBUGS (using the R2WinBUGS package).
Furthermore it allows interoperability with GeMTC files that were created by the GeMTC GUI or exported from
See
S. Dias, A.J. Sutton, A.E. Ades, and N.J. Welton (2013),
A Generalized Linear Modeling Framework for Pairwise and Network Meta-analysis of Randomized Controlled Trials,
Medical Decision Making 33(5):607-617.
[
mtc.network
,
mtc.model
,
mtc.run
# Load the example network and generate a consistency model:
file <- system.file("extdata/luades-smoking.gemtc", package="gemtc")
network <- read.mtc.network(file)
model <- mtc.model(network, type="consistency")
# Load pre-generated samples instead of runing the model:
results <- mtc.run(model, thin=10)
results <- dget(system.file("extdata/luades-smoking.samples.gz", package="gemtc"))
# Print a basic statistical summary of the results:
summary(results)
## Iterations = 5010:25000
## Thinning interval = 10
## Number of chains = 4
## Sample size per chain = 2000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## d.A.B 0.4965 0.4081 0.004563 0.004989
## d.A.C 0.8359 0.2433 0.002720 0.003147
## d.A.D 1.1088 0.4355 0.004869 0.005280
## sd.d 0.8465 0.1913 0.002139 0.002965
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## d.A.B -0.2985 0.2312 0.4910 0.7530 1.341
## d.A.C 0.3878 0.6720 0.8273 0.9867 1.353
## d.A.D 0.2692 0.8197 1.0983 1.3824 2.006
## sd.d 0.5509 0.7119 0.8180 0.9542 1.283
Run the code above in your browser using DataLab