
Last chance! 50% off unlimited learning
Sale ends in
blobbogram
is a flexible function for creating blobbograms (forest plots), making no specific assumptions about the data being plotted. It supports column and row grouping as well as pagination.blobbogram(data, id.label="Study", ci.label="Mean (95% CI)",
left.label=NULL, right.label=NULL, center.label=NULL,
log.scale=FALSE, xlim=NULL, styles=NULL,
grouped=TRUE, group.labels=NULL,
columns=NULL, column.labels=NULL,
column.groups=NULL, column.group.labels=NULL,
digits=2,
ask=dev.interactive(orNone=TRUE),
draw.no.effect=TRUE)
exp()
transformed.styles
blobbogram
function creates a blobbogram (forest plot) from the given data (point estimates and confidence intervals) and meta-data (labels, column specifications, column groups, row groups, styles) using the grid
package.
If the plot would not fit the device's graphics region, the content is broken up into multiple plots generated in sequence (pagination).The data
argument is given as a data frame containing the following columns:
group.labels
argument).styles
argument).meta::forest
, grid::Grid
data <- read.table(textConnection('
id group pe ci.l ci.u style value.A value.B
"Study 1" 1 0.35 0.08 0.92 "normal" "2/46" "7/46"
"Study 2" 1 0.43 0.15 1.14 "normal" "4/50" "8/49"
"Study 3" 2 0.31 0.07 0.74 "normal" "2/97" "10/100"
"Study 4" 2 0.86 0.34 2.90 "normal" "9/104" "6/105"
"Study 5" 2 0.33 0.10 0.72 "normal" "4/74" "14/74"
"Study 6" 2 0.47 0.23 0.91 "normal" "11/120" "22/129"
"Pooled" NA 0.42 0.15 1.04 "pooled" NA NA
'), header=TRUE)
data$pe <- log(data$pe)
data$ci.l <- log(data$ci.l)
data$ci.u <- log(data$ci.u)
blobbogram(data, group.labels=c('GROUP 1', 'GROUP 2'),
columns=c('value.A', 'value.B'), column.labels=c('r/n', 'r/n'),
column.groups=c(1, 2), grouped=TRUE,
column.group.labels=c('Intervention', 'Control'),
id.label="Trial", ci.label="Odds Ratio (95% CrI)", log.scale=TRUE)
Run the code above in your browser using DataLab