
Last chance! 50% off unlimited learning
Sale ends in
Determining the convergence of Markov Chain Monte Carlo (MCMC) algorithms run on highly-dimensional or un-ordered spaces is an active area of research. This package implements several distance based algorithms for the creation of diagnostics in these situations. A forthcoming paper describes the methodology used in detail.
#Install from CRAN
install.packages('genMCMCDiag')
#Install from gitHub
# install.packages("devtools")
devtools::install_github("LukeDuttweiler/genMCMCDiag")
Consider the results of a multi-chain MCMC algorithm over a univariate
space. The genMCMCDiag
package provides a simple interface to retrieve
traceplots, the effective sample size (ESS), and the Gelman-Rubin
Potential Scale Reduction Factor (PSRF).
We demonstrate the usage of genMCMCDiag
in this simple scenario, using
the included simulated MCMC results uniMCMCResults
. The output of
genDiagnostic
is a traceplot and tables containing the ESS and PSRF
results. The method is set to ‘standard’ here as we don’t want to
transform the data prior to running the diagnostics, as it is already
univariate.
#Load package
library(genMCMCDiag)
#View structure of uniMCMCResults
str(uniMCMCResults)
#> List of 7
#> $ : num [1:2000] 5.72 5.72 5.72 -5.67 -5.67 ...
#> $ : num [1:2000] -3.98 -3.98 -3.98 3.81 3.61 ...
#> $ : num [1:2000] 2.17 2.34 -2.35 -2.35 -2.42 ...
#> $ : num [1:2000] 0.1266 0.058 0.0436 0.0103 0.0194 ...
#> $ : num [1:2000] 2 2 2 2 2 ...
#> $ : num [1:2000] 3.86 -3.74 3.75 3.75 3.75 ...
#> $ : num [1:2000] 5.87 -5.83 5.81 5.81 5.81 ...
#View Diagnostics
genDiagnostic(uniMCMCResults, proximityMap = 'standard')
#> ----------------------------------------------------
#> Generalized MCMC Diagnostics using Custom Method
#> ----------------------------------------------------
#>
#> |Effective Sample Size:
#> |---------------------------
#> | Chain 1| Chain 2| Chain 3| Chain 4| Chain 5| Chain 6| Chain 7| Sum|
#> |-------:|-------:|-------:|-------:|-------:|--------:|--------:|--------:|
#> | 847.966| 908.501| 885.617| 828.86| 694.21| 1052.483| 1019.646| 6237.283|
#>
#> |psrf:
#> |---------------------------
#> | Point est.| Upper C.I.|
#> |----------:|----------:|
#> | 1.014| 1.015|
Consider the results of a more complex multi-chain MCMC algorithm run on the space of Bayesian network (BN) partitions. The space of BN partitions does not have a natural distance based order (unlike the real-line used in the previous example), and so standard traceplots and MCMC diagnostics cannot be used.
genMCMCDiag
includes transformation methods to help deal with this
issue, based on a user-supplied (or built in) distance function. In this
instance we will use the built-in partitionDistance
and the ts
transformation method (details to be published in a forthcoming paper),
to view a diagnostic traceplot and transformed calculations of the ESS
and PSRF diagnostics.
#View Diagnostics from ts method
genDiagnostic(bnMCMCResults, proximityMap = 'ts', distance = partitionDist)
#> ----------------------------------------------------
#> Generalized MCMC Diagnostics using Custom Method
#> ----------------------------------------------------
#>
#> |Effective Sample Size:
#> |---------------------------
#> | Chain 1| Chain 2| Chain 3| Chain 4| Chain 5| Sum|
#> |-------:|-------:|-------:|-------:|-------:|------:|
#> | 30.553| 25.257| 18.956| 74.901| 32.204| 181.87|
#>
#> |psrf:
#> |---------------------------
#> | Point est.| Upper C.I.|
#> |----------:|----------:|
#> | 2.921| 5.161|
The diagnostic results clearly reveal a complete lack of mixing!
install.packages('genMCMCDiag')