scalar or vector of probabilities to compute the qf.
alpha
the value of \(\alpha\) parameter, \(\alpha>0\).
spec
a character string specifying the parent distribution (for example, "lnorm" if
the parent distribution corresponds to the lognormal).
arg
list of arguments/parameters of the parent distribution.
lower.tail
logical; if TRUE, probabilities are p, otherwise 1-p.
log.p
logical; if TRUE, probabilities p are returned as log(p).
Value
An object of the same length as p, giving the qf values computed at p.
Details
The qf of arc tan model with parameter \(\alpha\) has a general form of:
$$
Q(p) = G^{-1}\left(1-\frac{1}{\alpha} \tan( (1-p)\arctan(\alpha) )\right)
$$
for \(a\leq x\leq b\) where \(a\) and \(b\) follow the support of \(G(x)\). \(\arctan\) denote the inverse function of tangent and \(G^{-1}\) is the inverse cdf of parent distribution, respectively. Note also that \(\alpha>0\).
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Gomez-Deniz, E., & Calderin-Ojeda, E. Modelling insurance data with the pareto arctan distribution. ASTIN Bulletin, 1-22.