compare.proto.cor(gene.cor, proto.cor, nn,
p.adjust.m = c("none", "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr"))
p.adjust
.compute.proto.cor.meta
, compute.pairw.cor.meta
## load VDX dataset
data(vdxs)
## load NKI dataset
data(nkis)
## reduce datasets
ginter <- intersect(annot.vdxs[ ,"EntrezGene.ID"], annot.nkis[ ,"EntrezGene.ID"])
ginter <- ginter[!is.na(ginter)][1:30]
myx <- unique(c(match(ginter, annot.vdxs[ ,"EntrezGene.ID"]),
sample(x=1:nrow(annot.vdxs), size=20)))
data2.vdxs <- data.vdxs[ ,myx]
annot2.vdxs <- annot.vdxs[myx, ]
myx <- unique(c(match(ginter, annot.nkis[ ,"EntrezGene.ID"]),
sample(x=1:nrow(annot.nkis), size=20)))
data2.nkis <- data.nkis[ ,myx]
annot2.nkis <- annot.nkis[myx, ]
## mapping of datasets
datas <- list("VDX"=data2.vdxs,"NKI"=data2.nkis)
annots <- list("VDX"=annot2.vdxs, "NKI"=annot2.nkis)
datas.mapped <- map.datasets(datas=datas, annots=annots, do.mapping=TRUE)
## define some prototypes
protos <- paste("geneid", ginter[1:3], sep=".")
## compute meta-estimate of correlation coefficients to the three prototype genes
probecor <- compute.proto.cor.meta(datas=datas.mapped$datas, proto=protos,
method="pearson")
## compute meta-estimate of pairwise correlation coefficients between prototypes
datas.proto <- lapply(X=datas.mapped$datas, FUN=function(x, p) {
return(x[ ,p,drop=FALSE]) }, p=protos)
protocor <- compute.pairw.cor.meta(datas=datas.proto, method="pearson")
## compare correlation coefficients to each prototype
res <- compare.proto.cor(gene.cor=probecor$cor, proto.cor=protocor$cor,
nn=probecor$cor.n, p.adjust.m="fdr")
head(res)
Run the code above in your browser using DataLab