Learn R Programming

genekitr (version 1.2.8)

genORA: Gene Over-Representation Enrichment Analysis

Description

Gene Over-Representation Enrichment Analysis

Usage

genORA(
  id,
  geneset,
  group_list = NULL,
  padj_method = "BH",
  p_cutoff = 0.05,
  q_cutoff = 0.15,
  min_gset_size = 10,
  max_gset_size = 500,
  universe
)

Value

A `data.frame`.

Arguments

id

A vector of gene id which can be entrezid, ensembl, symbol or uniprot.

geneset

Gene set is a two-column data.frame with term id and gene id. Please use package `geneset` to select available gene set or make new one.

group_list

A list of gene group information, default is NULL.

padj_method

One of "BH", "BY", "bonferroni","fdr","hochberg", "holm", "hommel", "none"

p_cutoff

Numeric of cutoff for both unadjusted and adjusted pvalue, default is 0.05.

q_cutoff

Numeric of cutoff for qvalue, default is 0.15.

min_gset_size

Numeric of minimal size of each geneset for analyzing, default is 10.

max_gset_size

Numeric of maximal size of each geneset for analyzing, default is 500.

universe

Character of background genes. If missing, all genes in geneset will be used as background.

Examples

Run this code
# \donttest{
# only gene ids
data(geneList, package = "genekitr")
id <- names(geneList)[abs(geneList) > 1]
gs <- geneset::getGO(org = "human",ont = "mf",data_dir = tempdir())
ora <- genORA(id, geneset = gs)

# gene id with groups
id <- c(head(names(geneList), 50), tail(names(geneList), 50))
group <- list(
  group1 = c(rep("up", 50), rep("down", 50)),
  group2 = c(rep("A", 20), rep("B", 30))
)
gora <- genORA(id, geneset = gs, group_list = group)

# }

Run the code above in your browser using DataLab