
plot.xtree.pls
allows to drow PATHMOX tree for PLS-PM## S3 method for class 'xtree.pls':
plot(x, root.col = "grey", node.col = "orange",
leaf.col = "green2", shadow.size = 0.003, node.shadow = "red",
leaf.shadow = "darkgreen", cex = 0.7, seg.col = "blue3", lwd = 1,
show.pval = TRUE, pval.col = "blue", main = NULL, cex.main = 1, ...)
"xtree.pls"
returned by
pls.pathmox
plot.xtree.pls
.## example of PLS-PM in alumni satisfaction
data(fibtele)
# select manifest variables
data.fib <-fibtele[,12:35]
# define inner model matrix
Image = rep(0,5)
Qual.spec = rep(0,5)
Qual.gen = rep(0,5)
Value = c(1,1,1,0,0)
Satis = c(1,1,1,1,0)
inner.fib <- rbind(Image,Qual.spec, Qual.gen, Value, Satis)
colnames(inner.fib) <- rownames(inner.fib)
# blocks of indicators (outer model)
outer.fib <- list(1:8,9:11,12:16,17:20,21:24)
modes.fib = rep("A", 5)
# apply plspm
pls.fib <- plspm(data.fib, inner.fib, outer.fib, modes.fib)
# re-ordering those segmentation variables with ordinal scale
seg.fib= fibtele[,2:11]
seg.fib$Age = factor(seg.fib$Age, ordered=T)
seg.fib$Salary = factor(seg.fib$Salary,
levels=c("<18k","25k","35k","45k",">45k"), ordered=T)
seg.fib$Accgrade = factor(seg.fib$Accgrade,
levels=c("accnote<7","7-8accnote","accnote>8"), ordered=T)
seg.fib$Grade = factor(seg.fib$Grade,
levels=c("<6.5note","6.5-7note","7-7.5note",">7.5note"), ordered=T)
# Pathmox Analysis
fib.pathmox=pls.pathmox(pls.fib,seg.fib,signif=0.05,
deep=2,size=0.2,n.node=20)
# plot pathmox tree
plot(pls.fib)
Run the code above in your browser using DataLab