Learn R Programming

genpathmox (version 0.2)

print.xtree.pls: Print function for the Pathmox Segmentation Trees: PLS-PM

Description

The function print.xtree.pls print the pls.pathmox tree

Usage

## S3 method for class 'xtree.pls':
print(x, ...)

Arguments

x
An object of class "xtree.pls".
...
Further arguments are ignored.

References

Lamberti, G. (2014) Modeling with Heterogeneity. PhD Dissertation.

summary.xtree.pls.

Examples

Run this code
## example of PLS-PM in alumni satisfaction

 data(fibtele)

 # select manifest variables
 data.fib <-fibtele[,12:35]

 # define inner model matrix
 Image 			= rep(0,5)
	 Qual.spec		= rep(0,5)
	 Qual.gen			= rep(0,5)
	 Value			= c(1,1,1,0,0)
	 Satis			= c(1,1,1,1,0)
 inner.fib <- rbind(Image,Qual.spec, Qual.gen, Value, Satis)
 colnames(inner.fib) <- rownames(inner.fib)

 # blocks of indicators (outer model)
 outer.fib <- list(1:8,9:11,12:16,17:20,21:24)
 modes.fib  = rep("A", 5)

 # apply plspm
 pls.fib <- plspm(data.fib, inner.fib, outer.fib, modes.fib)


 # re-ordering those segmentation variables with ordinal scale
  seg.fib= fibtele[,2:11]

	 seg.fib$Age = factor(seg.fib$Age, ordered=T)
	 seg.fib$Salary = factor(seg.fib$Salary,
			levels=c("<18k","25k","35k","45k",">45k"), ordered=T)
	 seg.fib$Accgrade = factor(seg.fib$Accgrade,
			levels=c("accnote<7","7-8accnote","accnote>8"), ordered=T)
	 seg.fib$Grade = factor(seg.fib$Grade,
	levels=c("<6.5note","6.5-7note","7-7.5note",">7.5note"), ordered=T)

 # Pathmox Analysis
 fib.pathmox=pls.pathmox(pls.fib,seg.fib,signif=0.05,
					deep=2,size=0.2,n.node=20)


 print(fib.pathmox)

Run the code above in your browser using DataLab