Learn R Programming

genpathmox (version 0.6)

plspm: PLS-PM: Partial Least Squares Path Modeling

Description

Estimate path models with latent variables by partial least squares approach (for both metric and non-metric data)

Usage

plspm(
  Data,
  path_matrix,
  blocks,
  modes = NULL,
  scaling = NULL,
  scheme = "centroid",
  scaled = TRUE,
  tol = 1e-06,
  maxiter = 100,
  plscomp = NULL,
  boot.val = FALSE,
  br = NULL,
  dataset = TRUE
)

Arguments

Data

matrix or data frame containing the manifest variables.

path_matrix

A square (lower triangular) boolean matrix representing the inner model (i.e. the path relationships between latent variables).

blocks

list of vectors with column indices or column names from Data indicating the sets of manifest variables forming each block (i.e. which manifest variables correspond to each block).

modes

character vector indicating the type of measurement for each block. Possible values are: "A", "B", "newA", "PLScore", "PLScow". The length of modes must be equal to the length of blocks.

scaling

optional argument for runing the non-metric approach; it is a list of string vectors indicating the type of measurement scale for each manifest variable specified in blocks. scaling must be specified when working with non-metric variables. Possible values: "num" (linear transformation, suitable for numerical variables), "raw" (no transformation), "nom" (non-monotonic transformation, suitable for nominal variables), and "ord" (monotonic transformation, suitable for ordinal variables).

scheme

string indicating the type of inner weighting scheme. Possible values are "centroid", "factorial", or "path".

scaled

whether manifest variables should be standardized. Only used when scaling = NULL. When (TRUE, data is scaled to standardized values (mean=0 and variance=1). The variance is calculated dividing by N instead of N-1).

tol

decimal value indicating the tolerance criterion for the iterations (tol=0.000001). Can be specified between 0 and 0.001.

maxiter

integer indicating the maximum number of iterations (maxiter=100 by default). The minimum value of maxiter is 100.

plscomp

optional vector indicating the number of PLS components (for each block) to be used when handling non-metric data (only used if scaling is provided)

boot.val

whether bootstrap validation should be performed. (FALSE by default).

br

number bootstrap resamples. Used only when boot.val=TRUE. When boot.val=TRUE, the default number of re-samples is 100.

dataset

whether the data matrix used in the computations should be retrieved (TRUE by default).

Details

Internal function