Learn R Programming

genridge (version 0.6-1)

pca.ridge: Transform Ridge Estimates to PCA Space

Description

The function pca.ridge transforms a ridge object from parameter space, where the estimated coefficients are $\beta_k$ with covariance matrices $\Sigma_k$, to the principal component space defined by the right singular vectors, $V$, of the singular value decomposition of the scaled predictor matrix, X. In this space, the transformed coefficients are $V \beta_k$, with covariance matrices $$V \Sigma_k V^T$$ This transformation provides alternative views of ridge estimates in low-rank approximations.

Usage

pca.ridge(x, ...)

Arguments

Value

An object of class c("ridge", "pcaridge"), with the same components as the original ridge object.

References

Friendly, M. (2011). The Generalized Ridge Trace Plot: Visualizing Bias and Precision. In preparation.

See Also

ridge

Examples

Run this code
longley.y <- longley[, "Employed"]
longley.X <- data.matrix(longley[, c(2:6,1)])

lambda <- c(0, 0.005, 0.01, 0.02, 0.04, 0.08)
lridge <- ridge(longley.y, longley.X, lambda=lambda)

plridge <- pca.ridge(lridge)
traceplot(plridge)
pairs(plridge)
# view in space of smallest singular values
plot(plridge, variables=5:6)

Run the code above in your browser using DataLab