The R implementation to get the elements necessary for calculations for the exponential square-root setting (a=0.5, b=0.5).
get_elts_exp(
hdx,
hpdx,
x,
centered = TRUE,
profiled_if_noncenter = TRUE,
scale = "",
diagonal_multiplier = 1
)
A list that contains the elements necessary for estimation.
The sample size.
The dimension.
The centered setting or not. Same as input.
The scaling method. Same as input.
The diagonal multiplier. Same as input.
A vector that contains the diagonal entries of
The setting "exp"
.
The
The
Returned in the non-profiled non-centered setting. The
Returned in the non-profiled non-centered setting. The
Returned in the non-profiled non-centered setting. The
Returned in the profiled non-centered setting, where the
A matrix, x
.
A matrix, x
.
An n
by p
matrix, the data matrix, where n
is the sample size and p
the dimension.
A boolean, whether in the centered setting (assume TRUE
.
A boolean, whether in the profiled setting (TRUE
.
A string indicating the scaling method. Returned without being checked or used in the function body. Default to "norm"
.
A number >= 1, the diagonal multiplier.
For details on the returned values, please refer to get_elts_ab
or get_elts
.
n <- 50
p <- 30
eta <- rep(0, p)
K <- diag(p)
domain <- make_domain("R+", p=p)
x <- gen(n, setting="exp", abs=FALSE, eta=eta, K=K, domain=domain, finite_infinity=100,
xinit=NULL, seed=2, burn_in=1000, thinning=100, verbose=FALSE)
h_hp <- get_h_hp("min_pow", 1, 3)
h_hp_dx <- h_of_dist(h_hp, x, domain) # h and h' applied to distance from x to boundary
elts <- get_elts_exp(h_hp_dx$hdx, h_hp_dx$hpdx, x, centered=TRUE, scale="norm", diag=1.5)
elts <- get_elts_exp(h_hp_dx$hdx, h_hp_dx$hpdx, x, centered=FALSE, profiled_if_noncenter=TRUE,
scale="norm", diag=1.7)
elts <- get_elts_exp(h_hp_dx$hdx, h_hp_dx$hpdx, x, centered=FALSE, profiled_if_noncenter=FALSE,
scale="norm", diag=1.7)
Run the code above in your browser using DataLab