Learn R Programming

geoCount (version 1.150120)

MCMCinput: Settings for the MCMC Algorithm

Description

This function sets up the parameters and initial values used for the MCMC algorithms.

Usage

MCMCinput(run = 200, run.S = 1, rho.family = "rhoPowerExp", Y.family = "Poisson", priorSigma = "Halft", parSigma = c(1, 1), ifkappa = 0, scales = c(0.5, 1.65^2 + 0.8, 0.8, 0.7, 0.15), phi.bound = c(0.005, 1), initials = list(c(1), 1.5, 0.2, 1))

Arguments

run
the number of iterations
run.S
the number of internal iterations for latent variables
rho.family
take the value of "rhoPowerExp", "rhoMatern", or "rhoSph" which indicates the powered exponential, Matern, or Spherical correlation function is used
Y.family
take the value of "Poisson" or "Binomial" which indicates Poisson or Binomial distribution for response variables
priorSigma
the prior distribution for $\sigma$, the options include "Halft" (positive-truncated t distribution), "InvGamma" (inverse gamma distribution), and "Reciprocal" (reciprocal distribution)
parSigma
the parameters for the prior distribution of $\sigma$: when priorSigma = "Halft" the first parameter is scale and the second is degree of freedom; when priorSigma = "InvGamma" the first parameter is shape and the second is scale; when priorSigma = "Reciprocal" both parameters are ignored
ifkappa
take zero or non-zero value which indicates whether $\kappa$ should be sampled
scales
a vector which indicates the tuning parameters for $(S, \beta, \sigma,\phi,\kappa)$ respectively
phi.bound
the upper and lower bound for $\phi$
initials
a list which indicates the initial values for $(\beta, \sigma,\phi,\kappa)$ respectively

Value

A list of setting parameters.

Details

During each iteration of Gibbs sampling process, the group of latent variables is updated "run.S" times to improve accuracy and reduce autocorrelations.

See Also

runMCMC, runMCMC.sf.

Examples

Run this code
## Not run: 
#   input <- MCMCinput( run = 10000, run.S = 10, 
#           rho.family = "rhoPowerExp", 
#           Y.family = "Poisson", 
#           priorSigma = "Halft", parSigma = c(1, 1),
#           ifkappa=0,
#           scales=c(0.5, 1.5, 0.9, 0.6, 0.5), 
#           phi.bound=c(0.005, 1), 
#           initials=list(c(-1, 2, 1), 1, 0.1, 1) )
#   res <- runMCMC(Y, L=0, loc=loc, X=loc, MCMCinput = input )
# ## End(Not run)

Run the code above in your browser using DataLab