geodata
assuming the data are independent.
Computes and optionally plots profile log-likelihoods for the parameter of the Box-Cox simple power transformation $y^lambda$.boxcox.geodata(object, trend = "cte", ...)
as.geodata
.trend.spatial
for further details.
Defaults to "cte"
.boxcox
.lambda
vector and the computed profile log-likelihood vector, invisibly if the result is plotted.boxcox
facilitating its usage with geodata
objects. Notice this assume independent observations which is typically
not the case for geodata
objects.
boxcox
, boxcox.fit
for
parameter estimation results for independent data and
likfit
for parameter estimation
within the geostatistical model.if(require(MASS)){
data(wolfcamp)
boxcox(wolfcamp)
data(ca20)
boxcox(ca20, trend = ~altitude)
}
Run the code above in your browser using DataLab