InvChisquare

0th

Percentile

The (Scaled) Inverse Chi-Squared Distribution

Density and random generation for the scaled inverse chi-squared (\(\chi^2_{ScI}\)) distribution with df degrees of freedom and optional non-centrality parameter scale.

Keywords
distribution
Usage
dinvchisq(x, df, scale, log = FALSE)
rinvchisq(n, df, scale = 1/df)
Arguments
x

vector of quantiles.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

df

degrees of freedom.

scale

scale parameter.

log

logical; if TRUE, densities d are given as log(d).

Details

The inverse chi-squared distribution with df\(= n\) degrees of freedom has density $$f(x) = \frac{1}{{2}^{n/2} \Gamma (n/2)} {(1/x)}^{n/2+1} {e}^{-1/(2x)}$$ for \(x > 0\). The mean and variance are \(\frac{1}{(n-2)}\) and \(\frac{2}{(n-4)(n-2)^2}\).

The non-central chi-squared distribution with df\(= n\) degrees of freedom and non-centrality parameter scale \(= S^2\) has density $$ f(x) = \frac{{n/2}^{n/2}}{\Gamma (n/2)} S^n {(1/x)}^{n/2+1} {e}^{-(n S^2)/(2x)}$$, for \(x \ge 0\). The first is a particular case of the latter for \(\lambda = n/2\).

Value

dinvchisq gives the density and rinvchisq generates random deviates.

See Also

rchisq for the chi-squared distribution which is the basis for this function.

Aliases
  • dinvchisq
  • rinvchisq
Examples
# NOT RUN {
set.seed(1234); rinvchisq(5, df=2)
set.seed(1234); 1/rchisq(5, df=2)

set.seed(1234); rinvchisq(5, df=2, scale=5)
set.seed(1234); 5*2/rchisq(5, df=2)

## inverse Chi-squared is a particular case
x <- 1:10
all.equal(dinvchisq(x, df=2), dinvchisq(x, df=2, scale=1/2))
# }
Documentation reproduced from package geoR, version 1.8-1, License: GPL (>= 2)

Community examples

Looks like there are no examples yet.