# Not Run
# data(plethodon)
# Y.gpa<-gpagen(plethodon$land, print.progress = FALSE) #GPA-alignment
# gdf <- geomorph.data.frame(Y.gpa, species = plethodon$species,
# site = plethodon$site)
# Morphological disparity for entire data set
# morphol.disparity(coords ~ 1, groups = NULL, data = gdf,
# iter = 999, print.progress = FALSE)
# Morphological disparity for entire data set, accounting for allometry
# morphol.disparity(coords ~ Csize, groups= NULL, data = gdf,
# iter = 999, print.progress = FALSE)
# Morphological disparity without covariates, using overall mean
# morphol.disparity(coords ~ 1, groups= ~ species*site, data = gdf,
# iter = 999, print.progress = FALSE)
# Morphological partial disparities for overal mean
# morphol.disparity(coords ~ 1, groups= ~ species*site, partial = TRUE,
# data = gdf, iter = 999, print.progress = FALSE)
# Morphological disparity without covariates, using group means
# morphol.disparity(coords ~ species*site, groups= ~species*site,
# data = gdf, iter = 999, print.progress = FALSE)
# Morphological disparity of different groups than those
# described by the linear model
# morphol.disparity(coords ~ Csize + species*site, groups= ~ species,
# data = gdf, iter = 999, print.progress = FALSE)
# Extracting components
# MD <- morphol.disparity(coords ~ Csize + species*site, groups= ~ species,
# data = gdf, iter = 999, print.progress = FALSE)
# MD$Procrustes.var # just the Procrustes variances
### Morphol.disparity can be used with previously-defined
### procD.lm or lm.rrpp class objects
# data(plethspecies)
# Y.gpa<-gpagen(plethspecies$land) #GPA-alignment
# gp.end<-factor(c(0,0,1,0,0,1,1,0,0)) #endangered species vs. rest
# names(gp.end)<-plethspecies$phy$tip
# gdf <- geomorph.data.frame(Y.gpa, phy = plethspecies$phy,
# gp.end = gp.end)
# pleth.ols <- procD.lm(coords ~ Csize + gp.end,
# data = gdf, iter = 999) # ordinary least squares
# pleth.pgls <- procD.pgls(coords ~ Csize + gp.end, phy = phy,
# data = gdf, iter = 999) # phylogenetic generalized least squares
# summary(pleth.ols)
# summary(pleth.pgls)
# morphol.disparity(f1 = pleth.ols, groups = ~ gp.end, data = gdf,
# iter = 999, print.progress = FALSE)
# morphol.disparity(f1 = pleth.pgls, groups = ~ gp.end,
# transform = FALSE, data = gdf,
# iter = 999, print.progress = FALSE) # disparity in tangent space
# morphol.disparity(f1 = pleth.pgls, groups = ~ gp.end,
# transform = TRUE, data = gdf,
# iter = 999, print.progress = FALSE) # disparity in transformed space
# Three plots that correspond to the three tests
# PCA <- gm.prcomp(Y.gpa$coords, phy = plethspecies$phy)
# pPCA <- gm.prcomp(Y.gpa$coords, phy = plethspecies$phy,
# GLS = TRUE, transform = FALSE)
# tpPCA <- gm.prcomp(Y.gpa$coords, phy = plethspecies$phy,
# GLS = TRUE, transform = TRUE)
# par(mfrow = c(1,3))
# Phylomorphospace
# PC.plot <- plot(PCA, pch = 19, phylo = TRUE, main = "PCA-OLS")
# shapeHulls(PC.plot, groups = gp.end)
# Phylo-PCA
# pPC.plot <- plot(pPCA, pch = 19, phylo = TRUE, main = "pPCA - GLS, not transformed")
# shapeHulls(pPC.plot, groups = gp.end)
# Transformed phylo-PCA
# tpPC.plot <- plot(tpPCA, pch = 19, phylo = TRUE, main = "tpPCA - GLS, transformed")
# shapeHulls(tpPC.plot, groups = gp.end)
# par(mfrow = c(1,1))
### Variance using RRPP (not necessarily the same as disparity)
# PW <- pairwise(pleth.ols, groups = gp.end)
# summary(PW, test.type = 'var')
# PW2 <- pairwise(pleth.pgls, groups = gp.end)
# summary(PW2, test.type = 'var')
Run the code above in your browser using DataLab