Learn R Programming

geophys (version 1.4-1)

DGzx: Gravity anomaly in 2.5D

Description

Gravity anomaly in 2.5-Dimensions from an arbitrary polynomial at many stations.

Usage

DGzx(xs, zs, xv, zv, den)

Arguments

xs

station locations in X

zs

station locations in Z

xv

x-vertices

zv

z-vertices

den

density contrast

Value

vector of Delta-Gz and Delta-Gx at each station

Details

calculate the 2.5D solution to gravity. Orientation of the vertices should be right handed.

References

Won and Bevis (1987) Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and Fortran subroutines <doi:https://doi.org/10.1190/1.1442298>

Examples

Run this code
# NOT RUN {
nstn = 10
xstart = -10000
xend = 10000
xcen = 0
zcen = 5000
RAD = 2000


xs = seq(from=xstart, by=(xend-xstart)/nstn , length=nstn)
zs = rep(0, length=length(xs))

den = 0.2

Np = 6
theta = seq(from=0, to=2*pi, length=Np)
KZ = list(x=NA, y=NA)
KZ$x = xcen+RAD*cos(theta)
KZ$y = zcen+RAD*sin(theta)




Ngrav = DGzx(xs, zs,  KZ$x, KZ$y, den)




# }

Run the code above in your browser using DataLab