data(wolfcamp, package = "geoR")
## fitting an isotropic IRF(0) model
r.sv.iso <- sample.variogram(wolfcamp[["data"]], locations = wolfcamp[[1]],
lag.dist.def = seq(0, 200, by = 15))
r.irf0.iso <- fit.variogram.model(r.sv.iso, variogram.model = "RMfbm",
param = c(variance = 100, nugget = 1000, scale = 1., alpha = 1.),
fit.param = default.fit.param(scale = FALSE, alpha = TRUE),
method = "Nelder-Mead", hessian = FALSE, control = list(maxit = 5000))
summary(r.irf0.iso, correlation = TRUE)
## Not run:
# plot(r.sv.iso, type = "l")
# lines(r.irf0.iso, line.col = "red")## End(Not run)
## fitting an anisotropic IRF(0) model
r.sv.aniso <- sample.variogram(wolfcamp[["data"]],
locations = wolfcamp[[1]], lag.dist.def = seq(0, 200, by = 15),
xy.angle.def = c(0., 22.5, 67.5, 112.5, 157.5, 180.))
## Not run:
# plot(r.sv.aniso, type = "l")## End(Not run)
r.irf0.aniso <- fit.variogram.model(r.sv.aniso, variogram.model = "RMfbm",
param = c(variance = 100, nugget = 1000, scale = 1., alpha = 1.5),
fit.param = default.fit.param(scale = FALSE, alpha = TRUE),
aniso = default.aniso(f1 = 0.4, omega = 135.),
fit.aniso = default.fit.aniso(f1 = TRUE, omega = TRUE),
method = "Nelder-Mead", hessian = TRUE, control = list(maxit = 5000))
summary(r.irf0.aniso, correlation = TRUE)
## Not run:
# lines(r.irf0.aniso, xy.angle = seq(0, 135, by = 45))## End(Not run)
Run the code above in your browser using DataLab