georobplot and lines methods for class
georob plot the variogram model, estimated by (robust) restricted
maximum likelihood.
plot.georob computes and plots in addition the
sample variogram of the (robust) regression residuals and can be used to
generate residual diagnostics plots (Tukey-Anscombe plot, normal QQ plots
of residuals and random effects)."plot"(x, what = c( "variogram", "covariance", "correlation", "ta", "sl", "qq.res", "qq.ranef" ), add = FALSE, lag.dist.def, xy.angle.def = c(0, 180), xz.angle.def = c(0, 180), max.lag = Inf, estimator = c("mad", "qn", "ch", "matheron"), mean.angle = TRUE, level = what != "ta", smooth = what == "ta" || what == "sl", id.n = 3, labels.id = names(residuals(x)), cex.id = 0.75, label.pos = c(4,2), col, pch, xlab, ylab, main, lty = "solid", ...)
"lines"(x, what = c("variogram", "covariance", "correlation"), from = 1.e-6, to, n = 501, xy.angle = 90, xz.angle = 90, col = 1:length(xy.angle), pch = 1:length(xz.angle), lty = "solid", ...)georob, see georobObject."variogram": the variogram
"covariance": the covariance function
"correlation": the correlation function
"scale-location": square root of absolute regression
residals plotted against fitted values (Scale-Location plot)
"ta": regression residals plotted against fitted values
(Tukey-Anscombe plot)
"qq.res": normal Q-Q plot of standardized errors
$hat\epsilon$
"qq.ranef": normal Q-Q plot of standardized random
effects $hatB$
FALSE, default) or whether the information should be
added to the current plot (TRUE).sample.variogram. If missing then the sample variogram is
not computed.xy.angle.def must contain an ascending sequence of azimuth angles
in degrees from north (positive clockwise to south), see
sample.variogram. Omnidirectional variograms are computed
with the default c(0,180).xz.angle.def must contain an ascending sequence of angles in
degrees from zenith (positive clockwise to nadir), see
sample.variogram. Omnidirectional variograms are computed
with the default c(0,180)."qn": Genton's robust
Qn-estimator (default, Genton, 1998),
"mad": Dowd's robust MAD-estimator (Dowd, 1984),
"matheron": non-robust method-of-moments estimator,
"ch": robust Cressie-Hawkins estimator (Cressie and
Hawkins, 1980).
TRUE,
default) or from the mid-angles of the respective angular classes
(FALSE).object for what = "ta" or what = "qq.res".
level = 0 (default for what == "ta") extracts the
regression residuals $hatB(s) +
hat\epsilon(s)$ and level = 1 (default for what ==
"qq.res") only the estimated errors
$hat\epsilon(s)$.loess.smooth is added to the Tukey-Anscombe plot
(default TRUE.plot.lmrob).plot.lmrob).
NULL uses observation numbers.plot.lmrob).plot.lmrob).501).plot.plot.sample.variogram, loess.smooth
and graphical methods.georobIntro for a description of the model and a brief summary of the algorithms;
georob for (robust) fitting of spatial linear models;
georobObject for a description of the class georob;
sample.variogram for computing sample variograms.
## Not run:
# ################
# ## meuse data ##
# ################
# data(meuse)
#
# ## Gaussian REML fit
# r.logzn.reml <- georob(log(zinc) ~ sqrt(dist), data = meuse, locations = ~ x + y,
# variogram.model = "RMexp",
# param = c(variance = 0.15, nugget = 0.05, scale = 200),
# tuning.psi = 1000)
# summary(r.logzn.reml, correlation = TRUE)
#
# ## robust REML fit
# r.logzn.rob <- update(r.logzn.reml, tuning.psi = 1)
#
# summary(r.logzn.rob, correlation = TRUE)
#
# plot(r.logzn.reml, lag.dist.def = seq(0, 2000, by = 100))
# lines(r.logzn.rob, col = "red")## End(Not run)
Run the code above in your browser using DataLab