if (FALSE) {
# These examples require external data files not included with the package
# Basic nearest neighbor interpolation
soil_interpolated <- spatial_interpolation_comprehensive(
spatial_data = "soil_samples.csv",
target_variables = c("nitrogen", "phosphorus", "ph"),
method = "NN",
target_grid = study_area_grid,
region_boundary = "Iowa"
)
# Simple distance weighting
temp_interp <- spatial_interpolation_comprehensive(
spatial_data = weather_stations,
target_variables = "temperature",
method = "simple",
power = 2,
cross_validation = TRUE,
verbose = TRUE
)
# Multivariate imputation for environmental data
env_imputed <- spatial_interpolation_comprehensive(
spatial_data = env_monitoring,
target_variables = c("temp", "humidity", "pressure", "wind_speed"),
method = "mice",
mice_iterations = 15,
handle_outliers = "cap"
)
# Auto-method selection with comparison
best_interp <- spatial_interpolation_comprehensive(
spatial_data = precipitation_data,
target_variables = "annual_precip",
method = "auto",
cross_validation = TRUE,
cv_folds = 10,
target_grid = dem_template
)
# Access results and diagnostics
plot(best_interp) # Plot interpolated surface
best_interp$cross_validation$rmse # Cross-validation RMSE
best_interp$interpolation_info$method_selected # Method chosen
}
Run the code above in your browser using DataLab