Learn R Programming

geospt (version 0.4-9)

est.variograms: Variogram Estimator

Description

Calculate empirical variogram estimates. An object of class variogram contains empirical variogram estimates which are generated from a point object and a pair object. A variogram object is stored as a data frame containing seven columns: lags, bins, classic, robust,med, trim and n. The length of each vector is equal to the number of lags in the pair object used to create the variogram object, say l. The lags vector contains the lag numbers for each lag, beginning with one (1) and going to the number of lags (l). The bins vector contains the spatial midpoint of each lag. The classic, robust, med and trimmed.mean vectors contain: the classical, robust, median, and trimmed mean, respectively, which are given, respectively, by (see Cressie, 1993, p. 75) classical $$\gamma_{c}(h)=\frac{1}{n}\sum_{(i,j)\in N(h)}(z(x_{i})-z(x_{j}))^{2}$$ robust, $$\gamma_{m}(h)=\frac{(\frac{1}{n}\sum_{(i,j)\in N(h)} (\sqrt{|z(x_{i})-z(x_{j})|}))^{4}}{0.457+\frac{0.494}{n}}$$ median $$\gamma_{me}(h)=\frac{\mbox(median_{(i,j)\in N(h)} (\sqrt{|z(x_{i})-z(x_{j})|}))^{4}}{0.457+\frac{0.494}{n}}$$ and trimmed mean $$\gamma_{tm}(h)=\frac{(trimmed.mean(\sqrt{|z(x_{i})-z(x_{j})|}))^{4}}{0.457+\frac{0.494}{n}}$$ The $n$ vector contains the number $|N(h)|$ of pairs of points in each lag $N(h)$.

Usage

est.variograms(point.obj, pair.obj, a1, a2, trim)

Arguments

Value

A variogram object:lagsvector of lag identifiersbinsvector of midpoints of each lagclassicvector of classic variogram estimates for each lagrobustvector of robust variogram estimates for each lagmedvector of median variogram estimates for each lagtrimmed.meanvector of trimmed mean variogram estimates for each lagnvector of the number of pairs in each lag

References

Bardossy, A., 2001. Introduction to Geostatistics. University of Stuttgart. Cressie, N.A.C., 1993. Statistics for Spatial Data. Wiley. Majure, J., Gebhardt, A., 2009. sgeostat: An Object-oriented Framework for Geostatistical Modeling in S+. R package version 1.0-23. Roustant O., Dupuy, D., Helbert, C., 2007. Robust Estimation of the Variogram in Computer Experiments. Ecole des Mines, D�partement 3MI, 158 Cours Fauriel, 42023 Saint-Etienne, France http://www.gis.iastate.edu/SGeoStat/homepage.html

See Also

point, pair

Examples

Run this code
library(sgeostat, pos=which(search()=="package:gstat")+1)
data(maas)
maas.point <- point(maas) 
maas.pair <- pair(maas.point, num.lags=24, maxdist=2000) 
maas.v <- est.variograms(maas.point,maas.pair,'zinc',trim=0.1) 
maas.v

Run the code above in your browser using DataLab