Last chance! 50% off unlimited learning
Sale ends in
Generate a data frame of statistical values associated with cross-validation
criteria.cv(m.cv)
data frame containing: mean prediction errors (MPE), average kriging standard error (AKSE), root-mean-square prediction errors (RMSPE), mean standardized prediction errors (MSPE), root-mean-square standardized prediction errors (RMSSPE), mean absolute percentage prediction errors (MAPPE), coefficient of correlation of the prediction errors (CCPE), coefficient of determination (R2) and squared coefficient of correlation of the prediction errors (pseudoR2)
data frame containing: the coordinates of data, prediction columns,
prediction variance of cross-validation data points, observed values,
residuals, zscore (residual divided by kriging standard error), and
fold. If the rbf.tcv
function is used, the prediction variance
and zscore (residual divided by standard error) will have NA's
library(gstat)
data(meuse)
coordinates(meuse) <- ~x+y
m <- vgm(.59, "Sph", 874, .04)
# leave-one-out cross validation:
out <- krige.cv(log(zinc)~1, meuse, m, nmax = 40)
criterio.cv(out)
# multiquadratic function
data(preci)
coordinates(preci) <- ~x+y
# predefined eta
tab <- rbf.tcv(prec~x+y,preci,eta=1.488733, rho=0, n.neigh=9, func="M")
criterio.cv(tab)
Run the code above in your browser using DataLab