Calculate empirical variogram
estimates. An object of class
variogram contains empirical variogram estimates which are generated
from a point object and a pair object. A variogram object is stored
as a data frame containing seven columns: lags
, bins
,
classic
, robust
,med
, trim
and
n
. The length of each vector is equal to the number of lags
in the pair object used to create the variogram object, say l. The
lags
vector contains the lag numbers for each lag, beginning
with one (1) and going to the number of lags (l). The bins
vector
contains the spatial midpoint of each lag. The classic
, robust
,
med
and trimmed.mean
vectors contain: the classical,
robust, median, and trimmed mean, respectively, which are given, respectively,
by (see Cressie, 1993, p. 75)
classical $$ \gamma_{c}(h)=\frac{1}{n}\sum_{(i,j)\in N(h)}(z(x_{i})-z(x_{j}))^{2} $$
robust, $$ \gamma_{m}(h)=\frac{(\frac{1}{n}\sum_{(i,j)\in N(h)} (\sqrt{|z(x_{i})-z(x_{j})|}))^{4}}{0.457+\frac{0.494}{n}} $$
median $$ \gamma_{me}(h)=\frac{\mbox(median_{(i,j)\in N(h)} (\sqrt{|z(x_{i})-z(x_{j})|}))^{4}}{0.457+\frac{0.494}{|N(h)|}} $$
and trimmed mean $$ \gamma_{tm}(h)=\frac{(trimmed.mean_{(i,j)\in N(h)}(\sqrt{|z(x_{i})-z(x_{j})|}))^{4}}{0.457+\frac{0.494}{|N(h)|}} $$
The \(n\) vector contains the number \(|N(h)|\) of pairs of points in each lag \(N(h)\).
est.variograms(point.obj, pair.obj, a1, a2, trim)
A variogram object:
vector of lag identifiers
vector of midpoints of each lag
vector of classic variogram estimates for each lag
vector of robust variogram estimates for each lag
vector of median variogram estimates for each lag
vector of trimmed mean variogram estimates for each lag
vector of the number of pairs in each lag
a point object generated by point()
a pair object generated by pair()
a variable to calculate semivariogram for
an optional variable name, if entered cross variograms will be created between a1
and a2
percent of trimmed mean
Bardossy, A., 2001. Introduction to Geostatistics. University of Stuttgart.
Cressie, N.A.C., 1993. Statistics for Spatial Data. Wiley.
Majure, J., Gebhardt, A., 2009. sgeostat: An Object-oriented Framework for Geostatistical Modeling in S+. R package version 1.0-23.
Roustant O., Dupuy, D., Helbert, C., 2007. Robust Estimation of the Variogram in Computer Experiments. Ecole des Mines, Departement 3MI, 158 Cours Fauriel, 42023 Saint-Etienne, France
point
, pair
library(sgeostat, pos=which(search()=="package:gstat")+1)
data(maas)
maas.point <- point(maas)
maas.pair <- pair(maas.point, num.lags=24, maxdist=2000)
maas.v <- est.variograms(maas.point,maas.pair,'zinc',trim=0.1)
maas.v
Run the code above in your browser using DataLab